Định nghĩa Điện trở suất và điện dẫn suất

Trường hợp lý tưởng

Một miếng vật liệu có tiếp điểm điện ở hai đầu.

Trong trường hợp lý tưởng, thành phần vật lý và tiết diện của vật liệu được xem xét đồng đều trên toàn bộ vật mẫu, còn điện trường và mật độ dòng điện song song và không đổi. Nhiều điện trởchất dẫn điện thực tế có tiết diện đồng đều, dòng điện không đổi, và được làm bằng một vật liệu duy nhất, nên mô hình này cũng tương đối chính xác. Trong trường hợp này, điện trở suất ρ có thể được tính bằng:

ρ = R A ℓ , {\displaystyle \rho =R{\frac {A}{\ell }},\,\!}

trong đó

R là điện trở của một mẫu vật liệu đồng đềuℓ là chiều dài mẫu vật liệuA là diện tích tiết diện của mẫu vật liệu

Cả điện trở và điện trở suất đều biểu diễn khả năng cản trở dòng điện của một chất, nhưng không như điện trở, điện trở suất là một tính chất bên trong. Điều này nghĩa là mọi dây dẫn bằng đồng nguyên chất (có cấu trúc tinh thể không bị biến dạng, v.v.), bất kể hình dạng và kích thước, đều có cùng điện trở suất, nhưng một dây đồng dài, mảnh có điện trở lớn hơn nhiều so với một dây đồng ngắn, dày. Mỗi vật liệu đều có điện trở suất của riêng nó. Ví dụ, cao su có điện trở suất cao hơn đồng rất nhiều.

Trong một tương quan thủy lực, dòng điện chạy qua vật liệu có điện trở suất cao giống như nước chảy qua một ống dẫn chứa cát — trong khi dòng điện chạy qua vật liệu có điện trở suất thấp giống như nước chảy qua một ống rỗng. Nếu các ống đều có cùng hình dạng và chiều kích, một ống dẫn nhiều cát sẽ cản trở dòng chảy nhiều hơn. Tuy nhiên, sự cản trở đó không hoàn toàn phụ thuộc vào việc ống có cát hay không, mà còn phụ thuộc và chiều dài và chiều rộng của ống: ống ngắn hay rộng cản trở kém hơn ống dài hoặc mảnh.

Phương trình trên có thể được biến đổi, cho ta định luật Pouillet (đặt tên theo Claude Pouillet):

R = ρ ℓ A . {\displaystyle R=\rho {\frac {\ell }{A}}.\,\!}

Điện trở của một vật liệu tỷ lệ thuận với chiều dài nhưng tỉ lệ nghịch với diện tích tiết diện. Do đó đơn vị của điện trở suất có thể được biểu diễn bằng "ohm mét" (Ω⋅m) — tức ohm chia cho mét (cho chiều dài) rồi nhân cho mét vuông (cho diện tích tiết diện).

Điện dẫn suất, σ, là nghịch đảo của điện trở suất:

σ = 1 ρ . {\displaystyle \sigma ={\frac {1}{\rho }}.\,\!}

Điện dẫn suất có đơn vị SI là "siemens trên mét" (S/m).

Đại lượng vô hướng tổng quát

Trong những trường hợp kém lý tưởng hơn, ví dụ như hình dạng phức tạp, hoặc dòng điện và điện trường biến thiên ở những nơi khác nhau, cần sử dụng một biểu thức tổng quát hơn, trong đó điện trở suất tại một điểm được định nghĩa là tỉ số giữa điện trườngmật độ dòng điện tại điểm đó:

ρ = E J , {\displaystyle \rho ={\frac {E}{J}},\,\!}

trong đó

ρ là điện trở suất của vật liệuE là độ lớn của điện trường,J là độ lớn của mật độ dòng điện,

trong đó E và J ở bên trong vật dẫn.

Tương tự, điện dẫn suất là nghịch đảo của điện trở suất, tức

σ = 1 ρ = J E . {\displaystyle \sigma ={\frac {1}{\rho }}={\frac {J}{E}}.\,\!}

Ví dụ, cao su là vật liệu có ρ lớn và σ nhỏ — điện trường dù rất lớn cũng khó tạo dòng điện bên trong nó. Ngược lại, đồng có ρ nhỏ và σ lớn — một điện trường nhỏ cũng có thể tạo ra dòng điện lớn chạy qua nó.

Trong trường hợp điện trường và mật độ dòng điện không đổi, từ công thức tổng quát ta có thể suy ra công thức lý tưởng ở trên.

Nếu điện trường không đổi, nó bằng hiệu điện thế trên toàn bộ vật dẫn V chia cho chiều dài vật dẫn ℓ:

E = V ℓ . {\displaystyle E={\frac {V}{\ell }}\,.}

Nếu mật độ dòng điện không đổi, nó bằng cường độ dòng điện chia cho diện tích tiết diện:

J = I A . {\displaystyle J={\frac {I}{A}}\,.}

Thế các biểu thức cho E và J vào công thức tổng quát, ta được:

ρ = V A I ℓ . {\displaystyle \rho ={\frac {VA}{I\ell }}\,.}

Theo định luật Ohm thì V/I = R nên ta có:

ρ = R A ℓ . {\displaystyle \rho =R{\frac {A}{\ell }}\,.}

Tenxơ điện trở suất

Khi điện trở suất của vật liệu có thành phần chỉ hướng, phải sử dụng định nghĩa tổng quát nhất, bắt đầu từ dạng vectơ-tenxơ của định luật Ohm, liên hệ giữa điện trường và cường độ dòng điện trong vật dẫn. Tuy là phương trình tổng quát, nhưng độ phức tạp khiến nó chỉ được sử dụng trong những trường hợp dị hướng, khi mà không thể dùng những định nghĩa đơn giản hơn.

Ở đây, dị hướng nghĩa là vật liệu có tính chất khác nhau theo những hướng khác nhau. Ví dụ, một tinh thể than chì gồm các lớp graphit xếp chồng lên nhau, và dòng điện chạy qua một lớp rất dễ dàng, nhưng chạy từ lớp này sang lớp khác thì khó hơn nhiều.[4] Trong những trường hợp đó, dòng điện không hoàn toàn chạy cùng hướng với điện trường, nên phương trình được tổng quát thành dạng tenxơ ba chiều:[5][6]

J = σ E ⇔ E = ρ J {\displaystyle \mathbf {J} ={\boldsymbol {\sigma }}\mathbf {E} \,\,\Leftrightarrow \,\,\mathbf {E} ={\boldsymbol {\rho }}\mathbf {J} \,\!}

trong đó điện dẫn suất σ và điện trở suất σ là các tenxơ bậc 2, còn điện trường E và mật độ dòng điện J là các vectơ. Những tenxơ này có thể biểu diễn bằng ma trận 3×3, các vectơ bằng ma trận 3×1, và phép nhân ma trận cho vế phải của phương trình. Dạng ma trận của biểu thức trên là:

[ E x E y E z ] = [ ρ x x ρ x y ρ x z ρ y x ρ y y ρ y z ρ z x ρ z y ρ z z ] [ J x J y J z ] {\displaystyle {\begin{bmatrix}E_{x}\\E_{y}\\E_{z}\end{bmatrix}}={\begin{bmatrix}\rho _{xx}&\rho _{xy}&\rho _{xz}\\\rho _{yx}&\rho _{yy}&\rho _{yz}\\\rho _{zx}&\rho _{zy}&\rho _{zz}\end{bmatrix}}{\begin{bmatrix}J_{x}\\J_{y}\\J_{z}\end{bmatrix}}}

trong đó

E là vectơ điện trường, với các thành phần (Ex, Ey, Ez),σ là tenxơ điện trở suất, một ma trận 3×3,J là vectơ mật độ dòng điện, với các thành phần (Jx, Jy, Jz).

Sử dụng ký hiệu Einstein, điện trở suất có thể viết gọn lại thành:

E i = ρ i j J j {\displaystyle \mathbf {E} _{i}={\boldsymbol {\rho }}_{ij}\mathbf {J} _{j}}

Biểu thức của mỗi thành phần điện trường là:

E x = ρ x x J x + ρ x y J y + ρ x z J z . {\displaystyle E_{x}=\rho _{xx}J_{x}+\rho _{xy}J_{y}+\rho _{xz}J_{z}.} E y = ρ y x J x + ρ y y J y + ρ y z J z . {\displaystyle E_{y}=\rho _{yx}J_{x}+\rho _{yy}J_{y}+\rho _{yz}J_{z}.} E z = ρ z x J x + ρ z y J y + ρ z z J z . {\displaystyle E_{z}=\rho _{zx}J_{x}+\rho _{zy}J_{y}+\rho _{zz}J_{z}.}

Do hệ tọa độ có thể chọn tùy ý, quy ước thông dụng là chọn trục x song song với chiều dòng điện để Jy = Jz = 0. Khi ấy:

ρ x x = E x J x , ρ y x = E y J x ,  and  ρ z x = E z J x . {\displaystyle \rho _{xx}={\frac {E_{x}}{J_{x}}},\quad \rho _{yx}={\frac {E_{y}}{J_{x}}},{\text{ and }}\rho _{zx}={\frac {E_{z}}{J_{x}}}.}

Điện dẫn suất cũng được định nghĩa tương tự:[7]

[ J x J y J z ] = [ σ x x σ x y σ x z σ y x σ y y σ y z σ z x σ z y σ z z ] [ E x E y E z ] {\displaystyle {\begin{bmatrix}J_{x}\\J_{y}\\J_{z}\end{bmatrix}}={\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{yx}&\sigma _{yy}&\sigma _{yz}\\\sigma _{zx}&\sigma _{zy}&\sigma _{zz}\end{bmatrix}}{\begin{bmatrix}E_{x}\\E_{y}\\E_{z}\end{bmatrix}}}

hoặc bằng ký hiệu Einstein:

J i = σ i j E j {\displaystyle \mathbf {J} _{i}={\boldsymbol {\sigma }}_{ij}\mathbf {E} _{j}}

Cả hai đều cho ta:

J x = σ x x E x + σ x y E y + σ x z E z {\displaystyle J_{x}=\sigma _{xx}E_{x}+\sigma _{xy}E_{y}+\sigma _{xz}E_{z}} J y = σ y x E x + σ y y E y + σ y z E z {\displaystyle J_{y}=\sigma _{yx}E_{x}+\sigma _{yy}E_{y}+\sigma _{yz}E_{z}} J z = σ z x E x + σ z y E y + σ z z E z {\displaystyle J_{z}=\sigma _{zx}E_{x}+\sigma _{zy}E_{y}+\sigma _{zz}E_{z}}

Có thể thấy ρσ là các ma trận nghịch đảo của nhau. Tuy nhiên, trong trường hợp tổng quát, mỗi thành phần ma trận không nhất thiết là nghịch đảo của nhau; ví dụ như σxx không nhất thiết bằng 1/ρxx. Một ví dụ là hiệu ứng Hall, trong đó ρxy khác không. Trong hiệu ứng Hall, do bất biến quay quanh trục z, ρyy = ρxx và ρyx = −ρxy, nên quan hệ giữa điện trở suất và điện dẫn suất tinh giản thành:[8]

σ x x = ρ x x ρ x x 2 + ρ x y 2 , σ x y = − ρ x y ρ x x 2 + ρ x y 2 {\displaystyle \sigma _{xx}={\frac {\rho _{xx}}{\rho _{xx}^{2}+\rho _{xy}^{2}}},\quad \sigma _{xy}={\frac {-\rho _{xy}}{\rho _{xx}^{2}+\rho _{xy}^{2}}}}

Nếu điện trường song song với dòng điện, ρxy và ρxz bằng không. Nếu chúng bằng không, chỉ cần ρxx để biểu diễn điện trở suất. Khi ấy ta có thể viết ρ, tương đương với những công thức đơn giản hơn.

Tài liệu tham khảo

WikiPedia: Điện trở suất và điện dẫn suất http://hypertextbook.com/facts/2006/UmranUgur.shtm... http://www.matweb.com/search/DataSheet.aspx?MatGUI... http://www.sixtysymbols.com/videos/conductivity.ht... http://chemistry.stackexchange.com/questions/28333... http://www.wolframalpha.com/input/?i=conductivity+... http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/... http://library.bldrdoc.gov/docs/nbshb100.pdf //pubmed.ncbi.nlm.nih.gov/16851085 http://www.jfe-steel.co.jp/en/products/electrical/... http://www.transmission-line.net/2011/07/electrica...